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Abstract

The problem of scheduling n independent jobs on m uniform parallel machines such

that the total completion time is minimized is a NP-Hard problem. We propose several

heuristic-based online algorithms for machines with different speeds called Q2||Cmax. To

show the efficiency of the proposed online algorithms, we compute the optimal solution

for Q2||Cmax using a pseudo-polynomial algorithms based on dynamic programming

method. The pseudo-polynomial algorithm has time complexity O(n T 2)and can be

run on reasonable time for small number of jobs and small processing times. This

optimal offline algorithm is used to benchmark the efficiency of the proposed online

algorithms.
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Chapter 1

Introduction

In this chapter, we will discuss the fundamental concepts of the scheduling and detailed outline

about the rest of the thesis. In Section 1.1, a basic introduction to the scheduling is given, and

Section 1.2, gives an outline of the thesis and discusses the scope and purpose of this thesis.

1.1 Introduction to Scheduling

Scheduling is really important, in the field where the resources have to be assigned to perform

an activity in a given period of time. One such industry is manufacturing and service industry.

Schedules are concerned with the allocation of resources optimally to a certain task or activities over

a period of time.

1.2 Outline

In Chapter 2, we will discuss the basic concepts of scheduling, different types of scheduling envi-

ronments and parameters used to measure the optimality criteria of the schedule. In Chapter 3,

we will give an overview of the type of algorithms present, discuss in detail about their usage and

its importance. We also explain about the NP-Hard, NP-Complete and Pseudo Polynomial time

complexities. In Chapter 4, we will illustrate the implementation of different offline and online al-

gorithms, and we will further explain about their working using sample job sets. In Chapter 5, we

introduce a pseudo polynomial algorithm, which uses a dynamic programming procedure to obtain

an optimal makespan, and we also discussed its implementation in this chapter. In Chapter-6, we

have tested the efficiency of the online algorithms using the optimal makespan obtained by dynamic

programming procedure. Finally, in Chapter 7, we have concluded the thesis and future research

work are discussed.

1
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Chapter 2

Background

In this chapter, we will review some of the fundamental concepts of scheduling . Section 2.1 discuss

representation of schedule using Gantt charts. Section 2.2, illustrate about the different scheduling

characteristics, such as machine environment and job characteristics and we will further discuss the

optimality criteria used to measure the efficiency of the schedule. Finally, in Section 2.3, we will

discuss makespan and an algorithm to calculate makespan of a given schedule.

2.1 Scheduling

Let us suppose that we have n jobs and m machines, Ji represents the jobs where i = 1, 2....n, and

Mi representing machines where i =1, 2...m. Jobs (Ji) have to be processed on machines (Mi)

such that each machine can process at most one job at a given time, and each job can be processed

on just one machine. Allocation of jobs to machines is called Scheduling [1].

2.1.1 Gantt Chart

The schedules of jobs on machines are represented using Gantt chart. Gantt chart is either machine

oriented or job oriented charts. For example, if two machines and five jobs are given, the schedule

could look like the one in Figure 2.1. In another Figure 2.2, we have four machines and two jobs

whose operations can be split among several machines.

Figure 2.1: Machine-oriented Gantt chart

2
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Figure 2.2: Job-oriented Gantt Chart

2.2 Problem Classification

The scheduling problem is defined in terms of three parameters as α | β | γ depending on the job,

machine or scheduling characteristics [2]. Here, α describes the machine environment,β describes

the job environment and γ describes the optimality criteria.

2.2.1 Machine Environment

According to Graham [3], machine environment is qualified by a string α = α1α2, where α1 takes the

values α1 ε {o, P,Q,R, PMPM,QMPM} and α2 denotes the number of machines. Pij represents

the ith processing time of the job Jj .

Dedicated Machines

The symbol ’o’ denotes an empty symbol. If α1 = o, then α = α2. When Pij = Pi and α1 = o, jobs

must be processed on a dedicated machine. Let Oi1, ...Oi,ni be operations associated with Ji and

Oij which can be processed on any of set of machines µij εM1,M2...Mm. In the dedicated machines

µij is equal to a set of machines since all machines are identical.

Parallel Machines

When α1 ε P,Q,R [4], then jobs can be processed on any of the n machine M1 .... Mn. When

α1 =P , then the machines are called identical parallel machines . So job Ji with the processing

time Pij on the machine Mj will have Pij = Pi. When α1 =Q , then the machines are called as

uniform parallel machines. Then the processing time Pij of job Ji on machine Mj will be Pij =

Pi/Sj , where Sj is the speed of the machine Mj .

When α1 =R, then the machines are called unrelated parallel machines. The processing time

Pij of job Ji on the machine Mj will be Pij = Pi/Sij , where Sij is the speed of machine, Mj

which is dependent on job Ji. Parallel machine are discussed detailed in Section 2.2.

3
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Multi-purpose Machines

Let Oij be the operation associated with Ji. If this operation can be processed on any machine

then this type of scheduling machines, are called multi-purpose machines [5]. If α1 = PMPM , then

they are multi-purpose machine with identical speeds. If α1 = QMPM , then they are multi-purpose

machine, with an uniform speeds.

Machine Count α2

In a machine environment, the number of machines is denoted by α2. If α2 is a positive integer

value, then it denotes the number of machines available. For example, when α2 = 3 then we have

three machines available for the jobs to be processed on these machines. If the number of machines

is arbitrary and varying, then we denote α2 = o.

2.2.2 Job Characteristics

According to Brucker [2], job characteristics are defined by a set β, which contains six elements

β1, β2, β3, β4, β5 and β6.

β1 Preemption

Preemption means the processing of a job can be interrupted and job processing can be later resumed

even on other machines. There is no limit to the number of times jobs can be interrupted and

resumed. If job preemption is allowed, we represent β1 = pmtn. If there is no preemption, we do

not specify β1 in job characteristics.

β2 Precedence Relation

If job Ji is processed and completed before starting processing Jk then such a precedence is

represented as Ji → Jk. These precedence relations is represented by an acyclic directed graph G

= (V,A), where V = 1,...,n corresponds with the jobs, (i, k) ∈ A. An acyclic digraph is a directed

graph containing no directed cycles; it is also known as a directed acyclic graph or a ”DAG.” Every

finite acyclic digraph has at least one node of outdegree 0.

Scheduling problems with the restricted precedences are given by chains,an intree,an outtree,

a tree or a series-parallel directed graph. According to Baker [1], for a node, the number of head

endpoints adjacent to a node is called the indegree of the node and the number of tail endpoints

adjacent to a node is called the outdegree of the node. An outdegree and indegree is called ”branching

factor” in trees. We denote β2 = intree so an acyclic directed graph G is a rooted tree. An acyclic

4
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directed graph G has an outdegree which is most one for every vertex, So in an intree all the arrows

are directed towards the root. Similarly β2 = outtree, then an acyclic directed graph G will have an

indegree which is most one for every vertex, so we have all arrows away from the root. If an acyclic

directed graph G is either an intree or an outtree then β2 is represented as β2 = tree.

β2 ∈ sp - graph, chain

A chain in a graph model is defined as a chain graph which may have both directed and undirected

edges, but without any directed cycles. A set of chains is called tree when it as outdegree and

indegree of each vertex,at most one degree. We reIf β2 = chain, then G is a set of chains.

Series-parallel graphs [6] are related to trees. According to Brucker [1], a graph is called as

sp-graph is built by means of the following rules. Let graph Gi = ( Vi, Ai) Any graph consisting of a

single vertex, is called sp-graph, is know as a Base graph . The graph which is formed from G1 and

G2 by joining the vertex sets and arc sets in sp-graph. It is represented as G =( V1 ∪ V2 ∪A1 ∪A2)

and is called Parallel composition. The graph G =( V1 ∪ V2 ∪ A1 ∪ A2 ∪ T1 × S2 ), G1 and

G2 are similar to parallel composition graph. Additionally, arcs (t,s) are added to graph G, where

t ∈ T1, T1 belongs to G1 and s ∈ S2, S2 is set of source in graph G2, Such a graph is called

Serial composition , so β2 = sp-graph we represent it this way only when G is a serial parallel

graph. If there is no such precedence relations between jobs, then β2 is not represented with any

notation.

β3 ∈ ri

Release time, is the time when a job had to be release from processing on a machine irrespective

of whether job had completed its processing on machine or not. If β3 = ri then the job Ji has

release time ri. If they are no release dates then we ignore denotating β3 in job characteristics

representation β.

β4 ∈ pij

Let job Ji, with the operation Oij , has a processing requirement Pij . β4 represents the job operations

or the processing times of the jobs to be processed on the machines. If each job has a unit processing

time associated with it then we represent the processing time as Pij= Pi. As β4 represents the

processing time we represents it as β4 = Pi.

5
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β5 ∈ di

Some of the jobs will have deadline di and these jobs have to be processed onmachines no later

than there deadline di. If we have any a such deadline for the jobs then we represent it in the

job characteristics as β5 = di. If there is no such deadline then we don’t include β5 in the job

characteristics representation.

β6 ∈ s− batch,p− batch

A batch means a set of jobs which have to be processed together on a machine. In batching problem,

group of jobs need to be scheduled together on a single machine. They are two type of batching

problems, p-batching and s-batching. In p-batching the length of the batch is the maximum among

the processing times of all jobs in the batch. In s-batching the length of the batch is the sum of

the processing times of the jobs in the batch. β6 of the job characteristics is represented as β6 =

p-batch or β6 = s-batch according to p-batching or s-batching problem respectively. If there is no

such batching problem then β6 is not indicated in the job characteristics.

2.3 Optimality Criteria

The time taken by the job to complete its processing on a machine is called finishing time. Every job

Ji have a finishing time Ci. The cost of finishing the job Ji is denoted as fi( Ci ). The optimality

criteria are represented as γ, which is a performance measurement. According to Graham’s [3]

notation they are two types of the total cost functions.

fmax(C) = maxfi(Ci)|i = 1, .., n (2.1)

and

Σfi(C) = Σn
i=1fi(Ci) (2.2)

Equation 2.1 and 2.2 represents the cost functions. The optimality criteria γ is represented as

γ = fmax or γ = Σfi. The main goal of the objective function is to minimize the makespan and

total flow time in a schedule.

Makespan

Makespan = maxCi|i = 1, ..n (2.3)

Total Flow time

SumofF lowtime = Σn
i=1Ci|i = 1, ..n (2.4)

6
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Some of the objective functions in the optimality criteria are weighted flow time, lateness,

earliness, tardiness, absoulte deviation, square deviation and unit penalty

Tardiness

Tardiness is defined as the time taken by the job after its due date to complete its processing on

the machine. Tardiness for a job Ji, is represented as Ti = maximum { 0, completion time( Ci) -

deadline ( di) }

Lateness

Lateness [7]is a category used to find whether the job is completed ahead of the schedule or on, or

before schedule. Lateness is represented as Li = completion time( Ci) - deadline( di)

Earliness

Earliness is defined as the time left after processing the job. Earliness occurs when job completes

its processing before it’s deadline. Earliness is represented as Ei = maximum { 0, deadline( di ) -

completiontime( Ci ) }

Unit Penality

Unit penalty is the penalty imposed on the job ji, if it had not completed its processing before the

deadline di. Unit penalty is represented as Ui = 0 if the job is processed before the deadline. Ui

= 1 if the job is processed after the deadline.

Absolute Deviation

Absolute deviation is represented as Ai = | Ci − di|

Squared Deviation

Squared deviation is represented as Si = |Ci − di|2

2.4 Makespan

They are set of jobs Ji , where i = 1,2... n. These jobs have either identical processing time or

different processing time and the task is that, we need to assign these jobs Ji on a set of machines

Mi, indexed by i = 1,2 ..n, so that completion time is minimized.

7
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The completion time is also known as makespan of the schedule. Minimizing the makespan is nothing

but minimizing the total processing time of the schedule. Makespan is a measure of efficiency.

Makespan algorithm is used to minimize the total completion time, by scheduling the jobs , in such

a way that they are processed on the best available machine so that the total completion time is

minimized.

Makespan Algorithm

Step-1: Jobs are listed in an arbitrary order.

Step-2: machines available, to process the jobs are list in an arbitrary order.

Step-3: The First job is allocated to the first available machine.

Step-4: The Second job is allocated to the next available machine.

Step-6: The next job is allocated to the machine that has the least amount of work load.

Step-7: Terminate the algorithm when all the jobs are scheduled on the machines.

8



www.manaraa.com

Chapter 3

Literature Review

In Section 3.1, we will discuss different types of algorithms available and various approaches to solve

these types of problems. In Section 3.2, we will discuss competitive analysis, which is a performance

analyzer. In later Sections, we will study about the basic definitions, notations and concepts of the

parallel machine environment, which we will discuss further in this thesis. We will further review

the time complexities of the algorithms, which minimize the completion time or make span of the

schedule.

3.1 Types of Algorithms

Algorithms are divided into three types, based on input type available to an algorithm in solving a

problem. Sanlaville [8] has proposed three different types of algorithm.

1. Offline Algorithm

2. Online Algorithm

3. Nearly Online Algorithm

An Offline Algorithm

An offline algorithm has the entire input available at the beginning of the algorithm. In real life, it

is hard to find examples of offline algorithms since the entire input in not available at the beginning

of the processing the jobs. Optimal algorithms are in general offline algorithms.

In today′s world, it is difficult to know the entire input and it is hard to find algorithms which

gives an optimal solution, without having any prior knowledge of the future jobs to be processed.

To solve many of current problems, we need algorithms which will process its input, even though it
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does not have any prior knowledge of the future input needed to the process. This requirement had

led to the existence of the online algorithms.

Online Algorithm

Today, in all the real time applications, entire input will not be available from the beginning. For

example, scheduling orders in a coffee shop, entire orders won’t be available from the beginning and

orders have to served in such a way that, the shop earns maximum profit. The orders are considered

as an online input since we are not aware of the future orders which are yet to come.

According to Allan Borodin [9] , in an online algorithm, input does not arrive as a batch but

it arrives as a sequence of input portions and the algorithms have to schedule the jobs according

to the input arrived. In an online algorithm, future input will be available at any given time. No

assumptions are made about the input stream. The input to the algorithm is given as a sequence of

requests σ = σ(1), σ(2), σ(3)...σ(m) These requests must be served in the order of their occurrence.

The request σ(t1) had to be completed at time t1 , where t1 > t.

Nearly Online Algorithm

Nearly online algorithms are which are neither offline algorithms nor online algorithms. Nearly

online algorithm process the input, knowledge of future input is partial, but the entire future won’t

be available. At a given time t, we know the available input, but in nearly online algorithm we will

know the future input but not the entire input. The future input will be known at a time t′.

In real time, we may have knowledge of the entire future input but having the knowledge of

next available input in available time t′ is similar to online algorithms. To find an optimal solution

for these algorithms is equally complex when compared to online algorithms.

Competitive Analysis

In competitive analysis [10], we get the competitive ratio to analyses the efficiency of the algorithm.

Competitive ratio is the ratio between the cost of function by the algorithm to the cost of function

by the optimal algorithm. In general offline algorithm, is the algorithms which gives the optimal

solution for scheduling jobs.

The performance of the online algorithm is usually evaluated using competitive

analysis. The online algorithm OLG is compared with an offline algorithm OPT. According to

Susanne OPT that knows the entire request sequence σ. Let OLG(σ ) and OPT( σ) denote the cost

occurred by OLG an OPT algorithms. Algorithm OLG is called C0-competitive if there exists a

10
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constant b such that,

ALG(σ) ≥ b.OPT (σ) (3.1)

3.2 Time Complexity

NP-Hard

NP-hard (non-deterministic polynomial-time hard) [11], in computational complexity theory, is a

class of problems that are, informally, ”at least as hard as the hardest problems in NP”. A problem

H is NP-hard if and only if there is an NP-complete problem L that is polynomial time Turing-

reducible to H (i.e., L TH). In other words, L can be solved in polynomial time by an oracle

machine with an oracle for H. Informally, we can think of an algorithm that can call such an oracle

machine as a subroutine for solving H, and solves L in polynomial time. If the subroutine call

takes only one step to compute. NP-hard problems may be of any type: decision problems, search

problems, or optimization problems.

NP-Complete

In computational complexity theory, the complexity class NP-complete (abbreviated NP-C or NPC)

[12] is a class of decision problems. A decision problem L is NP-complete if it is in the set of NP

problems and also in the set of NP-hard problems. The abbreviation NP refers to ”nondeterministic

polynomial time.”

Pesudo Polynomial

In computational complexity theory, a numeric algorithm runs in pseudo-polynomial time if its

running time is polynomial in the numeric value of the input (which is exponential in the length

of the input its number of digits). An NP-complete problem with known pseudo-polynomial time

algorithms is called weakly NP-complete. An NP-complete problem is called strongly NP-complete

if it is proven that it cannot be solved by a pseudo-polynomial time algorithm unless P=NP. The

strong/weak kinds of NP-hardness are defined analogously.

11



www.manaraa.com

Chapter 4

Implementation

This chapter consists of three parts. The first describes the problem and some of the fundamental

constraints and assumptions made to describe the problem. The second section deals with the

implementation of the two algorithms which accepts an offline input and try to provide an optimal

solution to the above stated problem. Finally, the third section deals with implementation of the

three algorithms which accepts an online input and has various constraints on the knowledge of the

next job to be scheduled.

4.1 Problem Description

We consider the problem of scheduling n independent jobs,( Ji ) indexed by i = {1, 2...n} on two

machines, machine-1 and machine-2. The machine-1 and machine-2 are related and uniform, and

the machine-1 is twice as speed as machine-2. The objective is to minimize the maximum completion

time and produce a minimum makespan.

Job characteristics

The job characteristics are non-preemption, no precedence relations and finally there is no release

date and deadline on the jobs to be scheduled. The job ( Ji)consists of the processing time Pi

Machine Environment

The machine environment is a uniform parallel machine.

Pij = Pi/Si

Sj : speed of machine Mj

So if job Ji is processed on machine-1 then the processing time is Pi and the processing time on

12
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the machine-2, is 2* Pi

Notations

Ji : represents the ith job of total n jobs

Pik : represents the processing time on the machine Mk, where k = 1,2

M1 : represents the machine-1

M2 : represents the machine-2

4.2 An Offline Algorithm

For an offline algorithm [13], the entire input is available from the beginning, and the algorithm has

to produce an output using these input values. In this Section, we will propose an offline algorithm,

for the problem stated in Section 4.1. In Section 4.2.1, we will deal with an offline algorithm, in

which next available job is scheduled on the machine, which becomes idle at the time of scheduling

the jobs.

Finally, in the Section 4.1.2, deals with an offline algorithm, in which the highest processing

jobs are scheduled on the faster machine and the less processing time jobs are scheduled on the

slower machine.

4.2.1 Algorithm1

In this algorithm, jobs are scheduled on the first available machine. When both machines are

available preference, is given to the machine, which takes the least time to process the job. If we

have 10 jobs with the processing times 8, 9, 3, 2, 4, 5, 7, 1, 6, 3 then the job processing times on the

machine-1 are P11=8, P21=9, P31=3, P41=2, P51=4, P61=5, P71=7, P81=1, P91=6, P101=3.

Then the job processing times on the machine-2 are P12=16, P22=18, P32=6, P42=4, P52=8,

P61=10, P71=14, P81=2, P91=12, P101=6.

Calculating Makespan

Initialization:

makespan1 = 0, makespan2 = 0

counter1 : represents the total processing times of the jobs scheduled on the machine-1

counter2: represents the total processing times of the jobs scheduled on the machine-2

Procedure:

1. Allocate the first job in the list to the faster machine and increment the counter1 by the processing
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Table 4.1: Job processing times

Job machine-1 machine-2

1 8 16
2 9 18
3 3 6
4 2 4
5 4 8
6 5 10
7 7 14
8 1 2
9 6 12
10 3 6

time of the job.

2. Check which machine is idle and allocate the next job to the available idle machine and then

increment the respective counter variable, by the processing time of the job.

3. If both machines are available, then schedule the next available job on the faster machine

4. Stop the procedure, when all jobs are scheduled.

Under this method, the jobs are scheduled according to the order they have arrived and no

priority is given to any jobs. So if, we have five jobs( n = 10), with the processing times as 8, 9, 3,

2, 4, 5, 7, 1, 6, 3 with respect to the machine-1. At beginning, both machines ( M1 and M2) are

available, and the jobs, j1 and j2 are scheduled on the machines, M1 and M2 respectively.

The load on the machines M1 and M2 are 8 and 18, since P11 = 8 and P22 = 18 and the

variables, counter-1 and counter-2 are incremented by 8 and 18 respectively. To schedule the third

job J3, we have M1 available, since the counter-1 value is less compared to the counter-2 value.

Now the load on the machine M1, after processing job J3, having processing time as P13= 3 is,

P11(8) + P13(3) = 11

The counter-1 value, after incrementing by processing time of J3 is 13. We schedule the job

J4,having the processing time P14 = 2, on M1 since the counter-1 value is less compared to the

counter-2 value. Now the load on the machine M1, is

P11(8) + P13(3)+ P14(2) = 13

We schedule, job J5 and J6 on the machine-1 M1, since the counter-1 value is less compared to

the counter-2 value. Now the load on the machine M1 is

P11(8) + P13(3)+ P14(2) + P15(4) + P16(5)= 22

Since the counter-1 value is greater than the counter-2 value, we will schedule the job J7, on the

machine-2 M2, Now the load on M2 is

P22(18) + P27(14) = 32
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The counter-2 value, after incrementing by the processing time of the job J7 is 32. We schedule the

job J8 on the machine-1 since the counter-1 value is less compared to the counter-2 value. Now the

load on the M1 is

P11(8) + P13(3)+ P14(2) + P15(4) + P16(5) + P18 = 23

The counter-1 value, after incrementing by the processing time of the job J7 is 23. Finally, the jobs

J9 and J10 are scheduled on M1. Now the load on the machine M1 is

P11(8) + P13(3)+ P14(2) + P15(4) + P16(5) + P18 + P19(6) + P101(3) = 32

The counter-1 value, after incrementing, by the processing time of the jobs J9 and J10 is 32.

Makespan of the schedule will be given by

max { counter-1, counter-2 }

Since both counter-1 and counter-2 have equal value, makespan of the schedule is 32.

Figure 4.1: Algorithm1 Gantt chart

4.2.2 Algorithm2

In this algorithm, we sort the jobs in the increasing order of their processing time on the machine-1

and schedule the longer jobs on the machine-1 and shorter jobs on the machine-2 irrespective of

whether the other machine is available or not. If the number of jobs n, to be scheduled are even

then n/2 jobs, having a longer processing times are scheduled on the faster machine, and the other

n/2 jobs are scheduled on the slower machine. If the number of jobs (n+1 ), to be scheduled are

odd then (n+1)/2 jobs, having a longer processing times are scheduled on the faster machine, and

the other n/2 jobs are scheduled on the slower machine. We sort the jobs( Ji ) where i = 1,2 ...,n,

in the decreasing order of their processing times on the machine-1.

Calculating Makespan

Initialization:

makespan1 = 0, makespan2 = 0

counter1: represents the total processing time of the jobs scheduled on the machine-1

counter 2: represents the total processing time of the jobs scheduled on the machine-2
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Sort the jobs in the decreasing order of their processing time on the machine-1

Procedure:

if ( Jobs == n ) then

The jobs( Ji), where i= 1,2...,n/2 are scheduled on M1.

counter-1 = counter-1 +
∑n/2

1 Pi

The next available jobs( Ji), where i = n/2,...,n are scheduled on M2

counter-2 = counter-2 +
∑n

n/2 Pi

end if

if ( Jobs == n+1 ) then

The jobs( Ji), where i= 1,2...,(n/2 )+1 are scheduled on M1.

counter-1 = counter-1 +
∑((n/2)+1)

1 Pi

The next available jobs( Ji), where i = (n/2)+1,...,n are scheduled on M2

counter-2 = counter-2 +
∑n

(n/2)+1 Pi

end if

if ( counter-1 ≥ counter-2 ) then

Makespan = counter-1

else

Makespan = counter-2

Let us take the job set represented in the Table 4.1. The processing times of the 10 jobs with respect

to the machine-1 are P11=8, P21=9, P31=3, P41=2, P51=4, P61=5, P71=7, P81=1, P91=6,

P101=3. The job processing times with respect to the machine-2 are P12=16, P22=18, P32=6,

P42=4, P52=8, P62=10, P72=14, P82=2, P92=12, P102=6.

Under this method, the jobs are scheduled according to the order they have arrived and no

priority is given to any jobs. At the beginning of the method, both machines ( M1 and M2)

are available, and the decreasing order of jobs is J2, J1, J7, J9, J6, J5, J10, J3, J4, J8. The jobs (

J2, J1, J7, J9, J6 ) having processing times ( P21 = 9, P11 = 8, P71 = 7, P91 = 6, P61 = 5) are

scheduled on the machine-1. Increment the counter-1 value, by the processing time of the jobs

scheduled on the machine-1. Now the counter-1 value is 35. The jobs ( J5, J10, J3, J4, J8 ) having

processing times ( P52 = 8, P102 = 6, P32 = 6, P42 = 4, P82 = 2) are scheduled on the machine-2.

Increment the counter-2 value, by the processing time of the jobs scheduled on the machine-2. Now

the counter-2 value is 26. Since the counter-1 value is greater than the counter-2 value, makespan

of the schedule is 35.
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Figure 4.2: Algorithm2 Gantt chart

4.3 An Online Algorithms

The entire input is not available at the beginning of the algorithm. The best methods are obtained

when entire input available but in real life we have mostly on-line problem. We stated three algo-

rithms to schedule n jobs. These algorithms take n jobs, as an online input and schedule them on

either machine-1 or machine-2. In Section 4.3.1, an algorithm, which takes the jobs to be scheduled

as an online input, is described.

In Section 3.3.2, Describe an algorithm, which also deals with an online input, but if we have

knowledge of next two available jobs, we schedule these incoming jobs in such a way that we will

minimize the completion time and get a minimum make span. Section 3.3.3 Describe an algorithm

which works in the same way as the algorithm stated in Section 3.3.2, We also consider that, is it

worth enough to wait and schedule the succeeding job on the faster machine.

Representation

In the online algorithms, since we are not aware of the future input, we will pause the processing

of jobs as we do not have any more jobs be schedule at that particular time. We will calculate the

current make span of the schedule, and we will resume from the pause. if we get any new jobs to be

scheduled.

4.3.1 Algorithm3

When a job Ji need to be scheduled, and both machines are available then the job Ji is scheduled

on the faster available machine among the both machines. Otherwise, Ji is scheduled on the next

available machine. So if, we have five jobs with the processing times 8, 9, 3, 2, 4. The processing

times of these jobs on machine-1 are P11 = 8, P21 = 9, P31 = 3, P41 = 2 , P51 = 4. The job

processing times on the machine-2 are P12 = 16, P22 = 18, P32 = 6, P42 = 4, P52 = 8.
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Table 4.2: Algorithm3 job set-1

Job machine-1 machine-2

1 8 16
2 9 18
3 3 6
4 2 4
5 4 8

Figure 4.3: Algorithm3 Gantt chart for job set-1

Calculating Make span

Case1: When both the machines are available, and the jobs Ji and Ji+1 need to be scheduled.

if ( Pi1 ≥ P(i+1)1) then

Ji is scheduled on the faster machine.

Ji+1is scheduled on the slower machine

else

Ji+1 is scheduled on the faster machine

Ji is scheduled on the slower machine

Case2: When one machine is available and the job Ji need to be scheduled.

Schedule the job Ji on the available machine.

At the beginning, both machines M1 and M2 are available, so the first job

J1 with the processing time P11, is scheduled on the machine-1 and the second job J2 with the

processing time P22 is scheduled on the machine-2. The counter-1 and counter-2 values are increment

by P11 = 8 and P22 = 18 respectively. The jobs ( J3, J4, J5) with the processing times ( P31 =

3, P41 = 2 , P51 = 4) are scheduled on the machine-1 since the machine-2 is available only after

processing these jobs. The counter-1 value is increment, by the total processing times of these jobs.

Now the counter-1 value is 17. The current makespan of the schedule is 18. Since Algorithm-3

Table 4.3: Algorithm3 job set-2

Job machine-1 machine-2

6 5 10
7 7 14

takes an online input, it has paused its job processing momentarily till it gets another job to be
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Figure 4.4: Algorithm3 Gantt chart for job set-2

scheduled. So, if we have two jobs, with the processing times on machine-1 as P61=4 and P71=3

and the processing times on the machine-2 as P62=8 and P72=6. The job J6 is scheduled on the

machine-1 since the counter-1 value is 17, and the counter-2 is 18. The counter-1 value incremented

to 22 after scheduling J6. The job J7 is scheduled on the machine-2 since the counter-1 value is

greater than the counter-2 value, and now the counter-2 value is incremented to 32. The current

makespan is 32.

Table 4.4: Algorithm3 Job set-3

Job machine-1 machine-2

8 1 2
9 6 12
10 3 6

Figure 4.5: Algorithm3 Gantt chart for job set-3

The counter-1 value is lower when compared to the counter-2 value, so the job

J8 is scheduled on the machine-1 and counter-1 value is incremented to 23. Similarly, jobs J9 and

J10 are scheduled on machine-1 since the counter-1 value is lower compared to the counter-2 value.

The counter-1 value is incremented by P91 = 6 + P101 =3, and now the counter-1 value is 32. The

current makespan of the schedule is 32.

4.3.2 Algorithm4

When a job Ji need to be scheduled, and both machines are available Ji is compared with Ji+1 and

the job with longer processing time is scheduled on machine-1. It again checks for the scheduling of
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shorter processing time job. When one machine is available Mk, K ε 1,2. Algorithm-4 check is it

worth waiting for the other machine to become available. If it is not worth waiting, then we will go

ahead and schedule the job on the available machine. At time t, job Ji need to be scheduled. The

machine Mk is available, and the machine Mk̄ is not available, but we know that machine Mk̄

will be available at time (t1 + ∆ti), where t1 is the total processing time of all the jobs, which are

scheduled on the machine Mk̄. If the job Ji is scheduled on the machine ( Mk̄) then it is terminated

at the time,

T1 = (t+ ∆ti + ProcessingtimeonmachineMk̄) (4.1)

If we schedule job Ji, on the machine Mk then it Ji have to be terminated at the time.

T2 = (t2 + Processing time of job on Mk) (4.2)

Where t2 is the total processing time of all the jobs, which are scheduled on the machine Mk. If

T1 ≥ T2 then Ji is scheduled on the machine Mk, otherwise on the machine Mk̄.

Calculating Makespan

Step 1: If M1 is available and M2 is not available, but M2 becomes available at t+ ∆t

If Ji is scheduled on machine M1 then

Ji will be completed at t+ Pi1

If Ji waits and will be scheduled on the machine M2 then

Ji will be completed at t+ ∆t+ Pi2

To decide what to do with Ji we compare t + Pi1 ? t + ∆t + Pi2. whatever is shorter we

decide for choosing that machine t+ Pi1 ? t+ ∆t+ 2Pi1

Step 2: If M2 is available and M1 is not available. By extrapolation we compare

t+ Pi2? t+ ∆t+ Pi1

t+ 2 ∗ Pi1? t+ ∆t+ Pi1

Case a) Pi1 > ∆t => t+ Pi2 > t+ ∆t+ Pi1 then schedule Ji on machine M1

Case b) Pi1 < ∆t => t+ Pi2 < t+ ∆t+ Pi1 then schedule Ji on machine M2

Lets us consider five jobs whose processing times are as follows 8, 9, 3, 2, 4 and the processing

times of these jobs on the machine-1 are P11 = 8, P21 = 9, P31 = 3, P41 = 2, P51 = 4. The job

processing times on the machine-2 are P12 = 16, P22 = 18, P32 = 6, P42 = 4, P52 = 8. Since

both machines, are available and the job J1 with the processing time P11 = 8, is scheduled on the

machine-1 M1.

Next job J2 with the processing time P21 = 9 needs to be scheduled. If job J2 is scheduled

on the machine-1, then the load on the machine-1 will be 8+9 = 16. If the job J2 is scheduled on the
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Table 4.5: Algorithm4 Job set-1

Job machine-1 machine-2

1 8 16
2 9 18
3 3 6
4 2 4
5 4 8

Figure 4.6: Algorithm4 Gantt chart for job set-1

machine-2 then the load on the machine-2 will be 18 So, according to algorithm4, it is more optimal

to schedule the job J2 on the machine-1. than on the machine-2 Similarly, the jobs J3, J4 and J5

are scheduled on the machine-2, since its load upon scheduling these jobs is lower when compared

to the current load on the machine-1. Load on the machine-2 is P32(6) + P42(4) + P52(8)= 18.

Load on the machine-1 is P11(8) + P21(9) = 17. If we have two jobs, with the processing times on

machine-1 as P61=4 and P71=3 and on the machine-2 as P62=8 and P72=6. The current load on

Table 4.6: Algorithm4 Job set-2

Job machine-1 machine-2

6 5 10
7 7 14

Figure 4.7: Algorithm4 Gantt chart for job set-2

the machine-1, so the job J6 with the processing time P61 = 5 is scheduled on the machine-1. So,

the current load on machine-1 is 18+ P61(5) = 23. The next available job J7 with the processing

time P71 = 7, needs to be scheduled. If we schedule J7 on the machine-1, we will have the load as

follows. Load on the machine-1 is P11(8) + P21(9) + P61(5)+ P71(7) = 29. If we schedule the

job J7 on the machine-2 then the load on the machine-2 is P32(6) + P42(4) + P52(8) + P72(14)

= 32 So, the job J72 is scheduled on the machine-1, and the current load on the machine-1 is 29

If we have three more jobs, with the processing times on machine-1 as P81 = 2, P91 = 6,

P101 = 3 and on the machine-2 as P82 = 4, P92 = 12, P102 = 6. If job J8 need to be scheduled on
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Table 4.7: Algorithm4 Job set-3

Job machine-1 machine-2

8 1 2
9 6 12
10 3 6

Figure 4.8: Algorithm4 Gantt chart for job set-3

either machine-1 or machine-2. If it is scheduled on the machine-1 then the load is P11(8) + P21(9)

+ P61(5)+ P71(7) + P81(1) = 30. If it scheduled on the machine-2 load is P32(6) + P42(4) +

P52(8) + P81(2) = 20. So the job J8, is scheduled on the machine-2, and the current load on the

machine-1 and machine-2 are 29 and 20 respectively. If job J9 , is scheduled on either machine-1 or

machine-2 then the load on the machine-1 while be P11(8) + P21(9) + P61(5)+ P71(7) + P91(6)

= 35 and load on the machine-2 while be P32(6) + P42(4) + P52(8) + P81(2) + P92(12) = 32. So

the job J9 is scheduled on the machine-2, and the current load on the machine-1 and machine-2 are

29 and 32 respectively If job J10 need to be scheduled on either machine-1 or machine-2 then the

load on the machine-1, and the machine-2 while be P11(8) + P21(9) + P61(5)+ P71(7) + P101(3)

= 32 and P32(6) + P42(4) + P52(8) + P81(2) + P92(12) + P102(6) = 38 respectively. So, the

job J10 is scheduled on the machine-1, and the current load on the machine-1 and machine-2 are

32 and 32 respectively The current makespan of the schedule is 32.

4.3.3 Algorithm5

Algorithm5 is similar to algorithm4 but in the case, when only one machine is available, we do not

schedule the job Ji on the faster available machine. Instead, we check for the availability of the

next job Ji+1 and if both jobs are available, then we compare the job Ji with the job Ji+1 and

schedule the job with the highest processing time on the machine-1 and slowest processing time on

the machine-2. If we have 5 jobs with the processing times 8,9, 3, 2, 4 and the processing times

of these jobs on the machine-1 are P11 = 16, P21 = 18, P31 = 6 P41 = 4, P51 = 8. The job

processing times on the machine-2 are P12 = 16, P22 = 36, P32 = 12 , P42 = 4 , P52 = 8.

At the beginning, both machines are available and job J1, processing time is compared with

job J2, processing time and the job with the highest processing time are scheduled on the machine-1

and the job with the lowest processing time is scheduled on the machine-2. Since P21 > P11, J1 is

scheduled on the machine-2, and J2 is scheduled on the machine-1. The load on the machine-2 is
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Table 4.8: Job processing of next input

Job machine-1 machine-2

1 8 16
2 9 18
3 3 6
4 2 4
5 4 8

P12(16) = 16. The load on the machine-1 is P21(9) = 9 though the load on the machine-1 is less

the job J3 is not scheduled on the machine-1. The job J3 is compared with the next job J4. Since

P31 > P41, J3 is scheduled on the machine-1. The load on the machine-1 is P21(9) + P31(3) =

12.

To schedule job J4, it is compared with J5, and though the machine-1 is available, we will

check for the load on the machines. If job J4 is scheduled on the machine-1 and the machine-2 then

the load on the machine-1 will be P21(9) + P31(3) + P41(2) = 14 and the load on the machine-2

will be P12(16) + P41(4) = 20. So the job J4 is scheduled on the machine-1. Finally, job J5 is

also scheduled on the machine-1 since, the load on the machine-1 will be less, when we schedule job

J5 on the machine-1.

Figure 4.9: Algorithm5 Gantt chart for job set-1

Table 4.9: Job processing of next input

Job machine-1 machine-2

6 5 10
7 7 14
8 1 2
9 6 12
10 3 6

Let us consider five more jobs J6, J7, J8, J9 and J10 with the processing time on the

machine-1 as P61 = 5, P71 = 7, P81 = 2, P91 = 6, P101 = 3 and the processing time on the

machine-2 as P62 = 10, P72 = 14, P82 = 4, P92 = 12, P102 = 6 The jobs J6 and J7 are

scheduled on the machine-1, the load on the machine-1 after processing J6, J7 is less compared to

load on the machine-2 if these jobs are processed on the machine-2. The load on the machine-1 is
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P21(9) + P31(3) + P41(2) + P51(4) + P61(5) + P71(7) = 30 and the load on the machine-2 is P12(16)

= 16 Next job J8, with processing time P81 = 1, have to be scheduled. Next job J9 is available,

and we compare J8 with the job J9, since P81 < P91, we schedule job J9 on machine-1 and job J8

is scheduled on the machine-2. The load on the machine-1 is P21(9) + P31(3) + P41(2) + P51(4) +

P61(5) +P71(7) + P91(6)= 36 and the load on the machine-2 is P12(16) + P82(2) = 18. Next job

J10, with the processing job P101 have to be scheduled. If J10 is scheduled on the machine-1 then

the load on the machine-1 will be P21(9) + P31(3) + P41(2) + P51(4) + P61(5) + P71(7) + P91(3) +

P101(3) = 39. If the job J10 is scheduled on the machine-2, then the load on the machine-2 will be

P12(16) + P82(2) + P102(6) = 24. As the load on the machine-2 is less compared to load on the

machine-1 so the job J10, is scheduled on the machine-2. The current makespan of the schedule is

36.

Figure 4.10: Algorithm5 Gantt chart for job set-2

Calculating Makespan

Case 1:

M1 and M2 are avaliable

If Pi1 ≤ P(i+1)1

Schedule Ji on M2 and J(i+1) on M1

else

Schedule Ji on M1 and J(i+1) on M2

Case 2:

Only M1 is avaliable

If Pi1 ≤ P(i+1)1

Schedule J(i+1) on M1

If we schedule Ji on M1 then

Ji, Ji+1 will be terminated after
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T = Pi1 + P(i+1)1 (4.3)

If we schedule Ji+1 on M-2 then

Ji, Ji+1 will be terminated after

T 1 = Max(P(i+1)1,∆t+ 2 ∗ Pi1) (4.4)

if T ≤ T 1 then

Ji is scheduled on M1

else on M2

Case 3:

Only M2 is avaliable

If Pi1 ≤ P(i+1)1 then

Schedule Ji on M2 and decide on Ji+1 same as in case-2

else

Schedule Ji+1onM2 and decide on Ji same as in case-2
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Chapter 5

Dynamic Programming Approach

In this subsection, we propose a pseudo polynomial algorithm for solving Q2|| Cmax problem.

5.1 Problem Description

In Q2|| Cmax problem, one has two independent machines, machine-1 and machine-2 and n jobs j

= 1,...,n. Each of these jobs can be processed either on the machine-1 or machine-2. If job Ji is

processed on the machine-1(machine-2), then the processing time is Pi(2 Pi). We have to assign

the jobs to the machines such that the makespan is minimized.

5.2 Dynamic Programming Approach

Notations

All the notations used in the dynamic programming procedure [14].

n : the total number of jobs

Jij : the job Ji on the machine Mj

Pi : the processing time of the job Ji

t1 : the total processing time of all jobs assigned to the machine M1

t2 : the total processing time of all jobs assigned to the machine M2

T : the upper bound of the makespan

T = max{
n∑

j=1

Pj ,

n∑
j=1

(2 ∗ Pj)} (5.1)
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In this dynamic programming procedure, we use the indicator variable I (j, t1, t2) to compute

makespan, for j = 1,2 ...,n and

0 ≤ t1, t2 ≤ T (5.2)

Initialization

This procedure is initialized by setting values to the indicator variables I (1, t1, t2).

if( t1 ≥ Pi || t2 ≥ (2 ∗ Pi)) then

I (1, t1, t2) =1;

else

I (1, t1, t2) =0;

Where Pi, 2 ∗ Pi are the processing times of the job Ji on the machine-1 and the machine-2

respectively.

Procedure

This procedure is done recursively assuming that all the values I (j-1, t1, t2) are known.

for ( j = 1,2 ...,n )

if ( I (j-1, max { ( t1−Pj),0 } t2) =1 or if( I (j-1, t1, max { ( t2− (2 ∗Pj)), 0 } ) =1 )

I (1, t1, t2) =1;

else

I (1, t1, t2) =0;

While calculating max { ( t1 − Pj ), 0 } we will make sure there is no possibility of scheduling

anything for a negative time value.

if ( t1 ≥ Pi ) then

I (j-1, max { ( t1 − Pj), 0 }, t2) = 0;

Similarly while calculating max { t2 − 2 ∗ Pj , 0 }

if ( t2 ≥ Pi ) then

I (j-1, t1, max { ( t2 − 2 ∗ Pj), 0 }) = 0;

Optimal Makespan

The optimal makespan is given by the smallest t with I (n, t, t ) = 1.
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Time Complexity

The time complexity of the algorithm is O(n T 2 ), where n is the total number of jobs, and T is

the upper bound for the makespan.

5.3 Example

Example1

In this Section, we will see the working of the dynamic programming approach, to obtain an optimal

makespan for the jobs Ji, where i=1,2,3.

Using the initialization method, mentioned in Section 5.2, we get the I (0,t1,t2)

as follows, 

0 0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1


I (1,t1,t2) matrix is as follows 

0 0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 1 1

0 0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1


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I (2,t1,t2) is as follows 

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 1 1

0 0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1


We get the above matrix, upon following the procedure mention the section 5.1. Optimal makespan

of the jobset in the Table 5.1 is given by the last matrix I (2,t1,t2). The smallest t with I (n, t, t

) = 1, gives the optimal makespan. In the above matrix, I (2,3,3) = 1 when t = 3, so the optimal

makespan is 3.

Table 5.1: Dynamic Approach for job set

Job Processing time

1 1
2 2
3 1

Example2

Comparing the results generated by the algorithms proposed in the chapter-4 with the optimal

makespan.

Table 5.2: Job Set-1
Job Processing time

1 8
2 9
3 3
4 2
5 4
6 5
7 7
8 1
9 6
10 3
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Table 5.3: Makespan of all the algorithms

Name of Algorithm Makespan

Algorithm1 32
Algorithm2 35
Algorithm3 32
Algorithm4 32
Algorithm5 36

Optimal makespan generated by dynamic programming is 32

In this case optimal makespan is near to the makespan generated by the proposed algorithms
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Chapter 6

Results Evaluation

A different set of jobs, are used to evaluate the performance of the algorithms, proposed in the

Chapter 4. A set of jobs has to scheduled on the machines, such that the total completion time of

jobs is minimized. This set of jobs will demonstrate the effectiveness of the proposed algorithms by

comparing their makespan.

In this chapter, we will further discuss the performance of the algorithms based on the number

of jobs with the different processing time, available in sets. In addition, we also compare the

makespan generated by the proposed algorithms against the optimal solution obtained using dynamic

programming procedure. Dynamic programming procedure gives the optimal makespan for a set of

job. It is one of the best benchmark to compare our results.

6.1 Performance Measurement of Algorithms

Job Set1

Lets consider the following job set 1, 2, 2, 3, 5, 8, 13, 21

Table 6.1: Job Set1
Job Processing time

1 1
2 2
3 2
4 3
5 5
6 8
7 13
8 21
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Figure 6.1: Algorithm3 Gantt chart for Job Set1

Figure 6.2: Algorithm4 Gantt chart for Job Set1

Figure 6.3: Algorithm5 Gantt chart for Job Set1

Figures 6.1, 6.2, 6.3 represents, the Gantt chart of the jobs, which are scheduled by the

algorithm3, algoritm4 and algorithm5 respectively. Makespan generated by these algorithms are 37,

50 and 35. This experiment shows that algorithm3 and algorithm5 work efficiently, when the job

processing times increase gradually.

Job Set2

Lets consider the following job set 1,3,5,7,9,11,13,15

Figure 6.4: machine-oriented Gantt chart for job set-2

Figures 6.4, 6.5 and 6.6 represents, the Gantt chart of the jobs, which are scheduled by the

algorithm3, algoritm4 and algorithm5 respectively. Makespan generated by these algorithms are
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Table 6.2: Job set2 processing times

Job Processing time

1 1
2 3
3 5
4 7
5 9
6 11
7 13
8 15

Figure 6.5: machine-oriented Gantt chart for job set-2

Figure 6.6: machine-oriented Gantt chart for job set-2

54, 34 and 45. This results show that algorithm4 works efficiently, when the job processing times

increase by a constant factor. In the job set-2 the processing times of the jobs are increased by a

constant factor 2.

Job Set3

Lets consider the following job set 2, 3, 5, 7, 11, 13, 17, 19, 23

Figure 6.7: machine-oriented Gantt chart for job set-3

Figures 6.7, 6.8 and 6.9 represents, the Gantt chart of the jobs, which are scheduled by the

algorithm3, algoritm4 and algorithm5 respectively. The makespan generated by these algorithms

are 73, 76 and 94.
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Table 6.3: Job set2 processing times

Job Processing time

1 2
2 3
3 5
4 7
5 11
6 13
7 17
8 19
9 23

Figure 6.8: machine-oriented Gantt chart for job set-3

Figure 6.9: machine-oriented Gantt chart for job set-3

This results show that algorithm3 works efficiently, when the job processing times increase by

a constant factor. In the job set-2 the processing times of the jobs are increased randomly.

6.2 Comparison between the Algorithms and the Optimal Solution

In this Section, we compare the results of the proposed algorithms, with an optimal solution gen-

erated by a dynamic programming strategy, proposed in the Chapter-5. This Section is used to

estimate the effectiveness of the proposed algorithms.

Job Set-1

Lets consider the following job set { 1, 1, 2 , 2 , 1 , 3 , 1 , 2 , 3 , 3 , 1 , 2 , 1 , 1, 1 ,1 }

Optimal makespan, given by dynamic programming procedure for the above the job set is 17.

Figures 6.10, 6.11, 6.12, 6.13, 6.14 represents the Gantt chart of the jobs, which are scheduled

on the algorithm1,algorithm2,algorithm3,algorithm4 and algorithm5. Makespan generated by these

algorithms are 17,18,17,17 and 17 respectively. Except, algorithm2 all other algorithms give an

optimal solution for the job set-1.
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Table 6.4: Job Set-1
Job Processing time

1 1
2 2
3 2
4 1
5 3
6 1
7 2
8 3
9 3
10 1
11 2
12 1
13 1
14 1
15 1

Figure 6.10: Algorithm1-comparision job set-1

Figure 6.11: Algorithm2-comparision job set-1

Figure 6.12: Algorithm3-comparision job set-1

Figure 6.13: Algorithm4-comparision job set-1

Figures 6.10, 6.11, 6.12, 6.13 and 6.14 represents the Gantt chart of the jobs, which are

scheduled on the algorithm1,algorithm2,algorithm3,algorithm4 and algorithm5. Makespan generated
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Figure 6.14: Algorithm5-comparision job set-1

Table 6.5: Makespan of all the algorithms

Name of Algorithm Makespan

Algorithm1 17
Algorithm2 18
Algorithm3 17
Algorithm4 17
Algorithm5 17

by these algorithms are 17,18,17,17 and 17 respectively. Except, algorithm2 all other algorithms give

an optimal solution for the job set-1.

Comparision results for jobset-1

We consider 20 jobsets of size n = 5, to compare the results of the proposed algorithms with the

optimal solution. Table 6.6 represents the jobset-1 data. Table 6.7 represents the makespan of the

algorithms. Table 6.8, represents the average of the ratios ri calculated using ri = mi/mopt.

In the jobset-1, algorithm4 performance was better comparing to all other algorithms.

Comparision results for jobset-2

We consider 20 jobsets of size n = 10, to compare the results of the proposed algorithms with the

optimal solution. For the sample 20 jobsets, considered for the testing the algorithm, we calcuate

the makespan and calculated makespans are represented in Table 6.9. Table 6.10, represents the

average of the ratios ri calculated using ri = mi/mopt. In the jobset-2, algorithm5 performance

was better comparing to all other algorithms.

Comparision results for jobset-3

We consider 20 jobsets of size n = 15, to compare the results of the proposed algorithms with the

optimal solution. For the sample 20 jobsets, considered for the testing the algorithm, we calcuate

the makespan and calculated makespans are represented in Table 6.11. Table 6.12, represents the

average of the ratios ri calculated using ri = mi/mopt. In the jobset-3, algorithm4 performance

was better comparing to all other algorithms.
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Table 6.6: Jobset-1 data
Job P1 P2 P3 P4 P5

J1 2 4 8 10 12
J2 1 1 1 1 1
J3 4 3 2 1 4
J4 1 2 4 7 8
J5 3 3 3 3 3
J6 1 2 4 9 8
J7 5 4 3 2 1
J8 6 4 3 2 1
J9 1 1 1 6 6
J10 3 4 4 3 1
J11 3 4 5 6 8
J12 6 7 8 3 1
J13 8 9 1 2 1
J14 1 2 3 4 5
J15 3 2 1 6 7
J16 9 10 13 1 2
J17 24 50 10 3 2
J18 40 50 10 1 2
J19 10 9 1 1 1
J10 10 3 4 5 6
J21 5 9 1 2 3

Comparision results for jobset-4

We consider 20 jobsets of size n = 20, to compare the results of the proposed algorithms with the

optimal solution. For the sample 20 jobsets, considered for the testing the algorithm, we calcuate

the makespan and calculated makespans are represented in Table 6.13. Table 6.14, represents the

average of the ratios ri calculated using ri = mi/mopt. In the jobset-4, algorithm4 performance

was better comparing to all other algorithms.

Comparision results for jobset-5

We consider 20 jobsets of size n = 25, to compare the results of the proposed algorithms with the

optimal solution. For the sample 20 jobsets, considered for the testing the algorithm, we calcuate

the makespan and calculated makespans are represented in Table 6.15. Table 6.16, represents the

average of the ratios ri calculated using ri = mi/mopt. In the jobset-4, algorithm4 performance

was better comparing to all other algorithms.
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Table 6.7: Makespan of all the algorithms

A1 A2 A3 A4 A5 OT
28 30 28 26 26 24
4 4 4 4 4 4
14 11 14 11 14 10
18 19 18 16 17 15
12 12 12 12 12 12
22 21 22 18 18 16
10 12 10 10 10 10
12 13 12 11 11 11
14 13 14 14 16 12
10 11 10 10 11 10
24 19 24 21 22 18
17 21 17 17 18 17
18 19 18 17 16 16
14 12 14 11 11 10
18 16 18 17 20 13
24 32 24 26 24 24
100 84 100 74 60 60
100 100 100 90 80 80
18 20 18 18 18 18
26 21 26 20 26 19
18 17 18 14 16 14

Table 6.8: Average rate of algorithms

A1g sum Avg

A1 25.2129931 1.200618719
A2 24.81743 1.181782381
A3 25.21299 1.200618571
A4 22.67282 1.079658095
A5 23.60579 1.124085238

Comparision results for jobset-6

We consider 20 jobsets of size n = 30, to compare the results of the proposed algorithms with the

optimal solution. For the sample 20 jobsets, considered for the testing the algorithm, we calcuate

the makespan and calculated makespans are represented in Table 6.17. Table 6.18, represents the

average of the ratios ri calculated using ri = mi/mopt. In the jobset-5, algorithm5 performance

was better comparing to all other algorithms.
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Table 6.9: Makespan of all the algorithms
M1 M2 M3 M4 M5 OPT
12 12 12 12 12 12
14 151 14 14 14 14
20 23 20 20 20 20
14 16 14 16 14 14
15 16 15 15 15 15
32 30 32 28 28 26
46 47 46 36 37 36
46 59 46 47 46 46
23 24 23 23 22 22
19 22 19 21 20 19
7 10 7 7 7 7

109 157 109 110 110 109
341 480 341 383 426 341
341 480 341 341 352 341
42 50 42 42 40 40
14 12 14 12 13 12
11 11 11 11 11 11
33 43 33 35 33 33
200 162 200 150 114 113
220 250 220 220 200 200

Table 6.10: Makespan of all the algorithms
M1 M2 M3 M4 M5 OPT

12 12 12 12 12 12
14 151 14 14 14 14
20 23 20 20 20 20
14 16 14 16 14 14
15 16 15 15 15 15
32 30 32 28 28 26
46 47 46 36 37 36
46 59 46 47 46 46
23 24 23 23 22 22
19 22 19 21 20 19
7 10 7 7 7 7

109 157 109 110 110 109
341 480 341 383 426 341
341 480 341 341 352 341
42 50 42 42 40 40
14 12 14 12 13 12
11 11 11 11 11 11
33 43 33 35 33 33
200 162 200 150 114 113
220 250 220 220 200 200
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Table 6.11: Average rate of algorithms
Alg sum Avg

A1 21.6405797 1.082028985
A2 34.0569 1.702845
A3 21.64058 1.082029
A4 21.06262 1.053131
A5 20.54021 1.0270105

Table 6.12: Jobset-3 Rate
Average rate of algorithms

A1 21.4081398 1.07040699
A2 24.68736 1.234368
A3 22.17689 1.1088445
A4 20.5358 1.02679
A5 20.76461 1.0382305

Table 6.13: Jobset-4 Rate
Average rate of algorithms

A1 21.36713702 1.068356851
A2 23.8654972 1.19327486
A3 22.135887 1.10679435
A4 20.4522372 1.02261186
A5 20.5473317 1.027366585

Table 6.14: Jobset-5
Average rate of algorithms

A1 20.766117 1.03830585
A2 23.91401 1.1957005
A3 20.76612 1.038306
A4 20.19549 1.0097745
A5 29.4641 1.473205

Table 6.15: Jobset-6
Average rate of algorithms

A1 22.96197404 1.148098702
A2 24.11969296 1.205984648
A3 21.76613 1.0883065
A4 21.6024834 1.08012417
A5 21.42619 1.0713095
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Chapter 7

Conclusion and Future work

In this study we have considered the problem of scheduling n independent jobs on two uniform par-

allel machines with an objective to minimize the make span ( Q2||Cmax). A few efficient algorithms

have been developed to solve large-scale and practical problems in scheduling. These algorithms

performance is tested using different set of jobs. Their efficiency to schedule n independent jobs, to

produce an optimal make span is tested by comparing their respective make spans with the optimal

make span generated by a pseudo polynomial procedure. The time complexity of this dynamic pro-

gramming approach is O(n T 2), so this approach can be adopted when the number jobs and total

processing times are not very large. Further we can improve the efficiency of the proposed algorithms

and the time complexity of the dynamic programming procedure can be further enhanced.
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